Интегралы показательной функции. Сложные интегралы
Сложные интегралы
Данная статья завершает тему неопределенных интегралов, и в неё включены интегралы, которые я считаю достаточно сложными. Урок создан по неоднократным просьбам посетителей, которые высказывали пожелания, чтобы на сайте были разобраны и более трудные примеры.
Предполагается, что читатель сего текста хорошо подготовлен и умеет применять основные приемы интегрирования. Чайникам и людям, которые не очень уверенно разбираются в интегралах, следует обратиться к самому первому уроку – Неопределенный интеграл. Примеры решений , где можно освоить тему практически с нуля. Более опытные студенты могут ознакомиться с приемами и методами интегрирования, которые в моих статьях еще не встречались.
Какие интегралы будут рассмотрены?
Сначала мы рассмотрим интегралы с корнями, для решения которых последовательно используется замена переменной и интегрирование по частям . То есть, в одном примере комбинируются сразу два приёма . И даже больше.
Затем мы познакомимся с интересным и оригинальным методом сведения интеграла к самому себе . Данным способом решается не так уж мало интегралов.
Третьим номером программы пойдут интегралы от сложных дробей , которые пролетели мимо кассы в предыдущих статьях.
В-четвертых, будут разобраны дополнительные интегралы от тригонометрических функций . В частности, существуют методы, которые позволяют избежать трудоемкой универсальной тригонометрической подстановки .
(2) В подынтегральной функции почленно делим числитель на знаменатель.
(3) Используем свойство линейности неопределенного интеграла. В последнем интеграле сразу подводим функцию под знак дифференциала .
(4) Берём оставшиеся интегралы. Обратите внимание, что в логарифме можно использовать скобки, а не модуль, так как .
(5) Проводим обратную замену, выразив из прямой замены «тэ»:
Студенты-мазохисты могут продифференцировать ответ и получить исходную подынтегральную функцию, как только что это сделал я. Нет-нет, я-то в правильном смысле выполнил проверку =)
Как видите, в ходе решения пришлось использовать даже больше двух приемов решения, таким образом, для расправы с подобными интегралами нужны уверенные навыки интегрирования и не самый маленький опыт.
На практике, конечно же, чаще встречается квадратный корень, вот три примера для самостоятельного решения:
Пример 2
Найти неопределенный интеграл
Пример 3
Найти неопределенный интеграл
Пример 4
Найти неопределенный интеграл
Данные примеры однотипны, поэтому полное решение в конце статьи будет только для Примера 2, в Примерах 3-4 – одни ответы. Какую замену применять в начале решений, думаю, очевидно. Почему я подобрал однотипные примеры? Часто встречаются в своем амплуа. Чаще, пожалуй, только что-нибудь вроде .
Но не всегда, когда под арктангенсом, синусом, косинусом, экспонентой и др. функциями находится корень из линейной функции, приходится применять сразу несколько методов. В ряде случаев удается «легко отделаться», то есть сразу после замены получается простой интеграл, который элементарно берётся. Самым легким из предложенных выше заданий является Пример 4, в нём после замены получается относительно несложный интеграл.
Методом сведения интеграла к самому себе
Остроумный и красивый метод. Немедленно рассмотрим классику жанра:
Пример 5
Найти неопределенный интеграл
Под корнем находится квадратный двучлен, и при попытке проинтегрировать данный пример чайник может мучаться часами. Такой интеграл берётся по частям и сводится к самому себе. В принципе не сложно. Если знаешь как.
Обозначим рассматриваемый интеграл латинской буквой и начнем решение:
Интегрируем по частям:
(1) Готовим подынтегральную функцию для почленного деления.
(2) Почленно делим подынтегральную функцию. Возможно, не всем понятно, распишу подробнее:
(3) Используем свойство линейности неопределенного интеграла.
(4) Берём последний интеграл («длинный» логарифм).
Теперь смотрим на самое начало решения:
И на концовку:
Что произошло? В результате наших манипуляций интеграл свёлся к самому себе!
Приравниваем начало и конец:
Переносим в левую часть со сменой знака:
А двойку сносим в правую часть. В результате:
Константу , строго говоря, надо было добавить ранее, но приписал её в конце. Настоятельно рекомендую прочитать, в чём тут строгость:
Примечание:
Более строго заключительный этап решения выглядит так:
Таким образом:
Константу можно переобозначить через . Почему можно переобозначить? Потому что всё равно принимает любые
значения, и в этом смысле между константами и нет никакой разницы.
В результате:
Подобный трюк с переобозначением константы широко используется в дифференциальных уравнениях . И там я буду строг. А здесь такая вольность допускается мной только для того, чтобы не путать вас лишними вещами и акцентировать внимание именно на самом методе интегрирования.
Пример 6
Найти неопределенный интеграл
Еще один типовой интеграл для самостоятельного решения. Полное решение и ответ в конце урока. Разница с ответом предыдущего примера будет!
Если под квадратным корнем находится квадратный трехчлен, то решение в любом случае сводится к двум разобранным примерам.
Например, рассмотрим интеграл . Всё, что нужно сделать – предварительно выделить полный квадрат
:
.
Далее проводится линейная замена, которая обходится «без всяких последствий»:
, в результате чего получается интеграл . Нечто знакомое, правда?
Или такой пример, с квадратным двучленом:
Выделяем полный квадрат:
И, после линейной замены , получаем интеграл , который также решается по уже рассмотренному алгоритму.
Рассмотрим еще два типовых примера на приём сведения интеграла к самому себе:
– интеграл от экспоненты, умноженной на синус;
– интеграл от экспоненты, умноженной на косинус.
В перечисленных интегралах по частям придется интегрировать уже два раза:
Пример 7
Найти неопределенный интеграл
Подынтегральная функция – экспонента, умноженная на синус.
Дважды интегрируем по частям и сводим интеграл к себе:
В результате двукратного интегрирования по частям интеграл свёлся к самому себе. Приравниваем начало и концовку решения:
Переносим в левую часть со сменой знака и выражаем наш интеграл:
Готово. Попутно желательно причесать правую часть, т.е. вынести экспоненту за скобки, а в скобках расположить синус с косинусом в «красивом» порядке.
Теперь вернемся к началу примера, а точнее – к интегрированию по частям:
За мы обозначили экспоненту. Возникает вопрос, именно экспоненту всегда нужно обозначать за ? Не обязательно. На самом деле в рассмотренном интеграле принципиально
без разницы
, что обозначать за , можно было пойти другим путём:
Почему такое возможно? Потому что экспонента превращается сама в себя (и при дифференцировании, и при интегрировании), синус с косинусом взаимно превращаются друг в друга (опять же – и при дифференцировании, и при интегрировании).
То есть, за можно обозначить и тригонометрическую функцию. Но, в рассмотренном примере это менее рационально, поскольку появятся дроби. При желании можете попытаться решить данный пример вторым способом, ответы обязательно должны совпасть.
Пример 8
Найти неопределенный интеграл
Это пример для самостоятельного решения. Перед тем как решать, подумайте, что выгоднее в данном случае обозначить за , экспоненту или тригонометрическую функцию? Полное решение и ответ в конце урока.
И, конечно, не забывайте, что большинство ответов данного урока достаточно легко проверить дифференцированием!
Примеры были рассмотрены не самые сложные. На практике чаще встречаются интегралы, где константа есть и в показателе экспоненты и в аргументе тригонометрической функции, например: . Попутаться в подобном интеграле придется многим, частенько путаюсь и я сам. Дело в том, что в решении велика вероятность появления дробей, и очень просто что-нибудь по невнимательности потерять. Кроме того, велика вероятность ошибки в знаках, обратите внимание, что в показателе экспоненты есть знак «минус», и это вносит дополнительную трудность.
На завершающем этапе часто получается примерно следующее:
Даже в конце решения следует быть предельно внимательным и грамотно разобраться с дробями:
Интегрирование сложных дробей
Потихоньку подбираемся к экватору урока и начинаем рассматривать интегралы от дробей. Опять же, не все они суперсложные, просто по тем или иным причинам примеры были немного «не в тему» в других статьях.
Продолжаем тему корней
Пример 9
Найти неопределенный интеграл
В знаменателе под корнем находится квадратный трехчлен плюс за пределами корня «довесок» в виде «икса». Интеграл такого вида решается с помощью стандартной замены.
Решаем:
Замена тут проста:
Смотрим на жизнь после замены:
(1) После подстановки приводим к общему знаменателю слагаемые под корнем.
(2) Выносим из-под корня.
(3) Числитель и знаменатель сокращаем на . Заодно под корнем я переставил слагаемые в удобном порядке. При определенном опыте шаги (1), (2) можно пропускать, выполняя прокомментированные действия устно.
(4) Полученный интеграл, как вы помните из урока Интегрирование некоторых дробей
, решается методом выделения полного квадрата
. Выделяем полный квадрат.
(5) Интегрированием получаем заурядный «длинный» логарифм.
(6) Проводим обратную замену. Если изначально , то обратно: .
(7) Заключительное действие направлено на прическу результата: под корнем снова приводим слагаемые к общему знаменателю и выносим из-под корня .
Пример 10
Найти неопределенный интеграл
Это пример для самостоятельного решения. Здесь к одинокому «иксу» добавлена константа, и замена почти такая же:
Единственное, что нужно дополнительно сделать – выразить «икс» из проводимой замены:
Полное решение и ответ в конце урока.
Иногда в таком интеграле под корнем может находиться квадратный двучлен, это не меняет способ решения, оно будет даже еще проще. Почувствуйте разницу:
Пример 11
Найти неопределенный интеграл
Пример 12
Найти неопределенный интеграл
Краткие решения и ответы в конце урока. Следует отметить, что Пример 11 является в точности биномиальным интегралом , метод решения которого рассматривался на уроке Интегралы от иррациональных функций .
Интеграл от неразложимого многочлена 2-й степени в степени
(многочлен в знаменателе)
Более редкий, но, тем не менее, встречающий в практических примерах вид интеграла.
Пример 13
Найти неопределенный интеграл
Но вернёмся к примеру со счастливым номером 13 (честное слово, не подгадал). Этот интеграл тоже из разряда тех, с которыми можно изрядно промучиться, если не знаешь, как решать.
Решение начинается с искусственного преобразования:
Как почленно разделить числитель на знаменатель, думаю, уже все понимают.
Полученный интеграл берётся по частям:
Для интеграла вида ( – натуральное число) выведена рекуррентная
формула понижения степени:
, где – интеграл степенью ниже.
Убедимся в справедливости данной формулы для прорешанного интеграла .
В данном случае: , , используем формулу:
Как видите, ответы совпадают.
Пример 14
Найти неопределенный интеграл
Это пример для самостоятельного решения. В образце решения дважды последовательно использована вышеупомянутая формула.
Если под степенью находится неразложимый на множители
квадратный трехчлен, то решение сводится к двучлену путем выделения полного квадрата, например:
Что делать, если дополнительно в числителе есть многочлен? В этом случае используется метод неопределенных коэффициентов, и подынтегральная функция раскладывается в сумму дробей. Но в моей практике такого примера не встречалось ни разу , поэтому я пропустил данный случай в статье Интегралы от дробно-рациональной функции , пропущу и сейчас. Если такой интеграл все-таки встретится, смотрите учебник – там всё просто. Не считаю целесообразным включать материал (даже несложный), вероятность встречи с которым стремится к нулю.
Интегрирование сложных тригонометрических функций
Прилагательное «сложный» для большинства примеров вновь носит во многом условный характер. Начнем с тангенсов и котангенсов в высоких степенях. С точки зрения используемых методов решения тангенс и котангенс – почти одно и тоже, поэтому я больше буду говорить о тангенсе, подразумевая, что продемонстрированный прием решения интеграла справедлив и для котангенса тоже.
На вышеупомянутом уроке мы рассматривали универсальную тригонометрическую подстановку для решения определенного вида интегралов от тригонометрических функций. Недостаток универсальной тригонометрической подстановки заключается в том, что при её применении часто возникают громоздкие интегралы с трудными вычислениями. И в ряде случаев универсальной тригонометрической подстановки можно избежать!
Рассмотрим еще один канонический пример, интеграл от единицы, деленной на синус:
Пример 17
Найти неопределенный интеграл
Здесь можно использовать универсальную тригонометрическую подстановку и получить ответ, но существует более рациональный путь. Я приведу полное решение с комментами к каждому шагу:
(1) Используем тригонометрическую формулу синуса двойного угла .
(2) Проводим искусственное преобразование: В знаменателе делим и умножаем на .
(3) По известной формуле в знаменателе превращаем дробь в тангенс.
(4) Подводим функцию под знак дифференциала.
(5) Берём интеграл.
Пара простых примеров для самостоятельного решения:
Пример 18
Найти неопределенный интеграл
Указание: Самым первым действием следует использовать формулу приведения и аккуратно провести аналогичные предыдущему примеру действия.
Пример 19
Найти неопределенный интеграл
Ну, это совсем простой пример.
Полные решения и ответы в конце урока.
Думаю, теперь ни у кого не возникнет проблем с интегралами:
и т.п.
В чём состоит идея метода? Идея состоит в том, чтобы с помощью преобразований, тригонометрических формул организовать в подынтегральной функции только тангенсы и производную тангенса . То есть, речь идет о замене: . В Примерах 17-19 мы фактически и применяли данную замену, но интегралы были настолько просты, что дело обошлось эквивалентным действием – подведением функции под знак дифференциала .
Аналогичные рассуждения, как я уже оговаривался, можно провести для котангенса.
Существует и формальная предпосылка для применения вышеуказанной замены:
Сумма степеней косинуса и синуса – целое отрицательное ЧЁТНОЕ число , например:
для интеграла – целое отрицательное ЧЁТНОЕ число.
! Примечание :если подынтегральная функция содержит ТОЛЬКО синус или ТОЛЬКО косинус, то интеграл берётся и при отрицательной нечётной степени (простейшие случаи – в Примерах №№17, 18).
Рассмотрим пару более содержательных заданий на это правило:
Пример 20
Найти неопределенный интеграл
Сумма степеней синуса и косинуса : 2 – 6 = –4 – целое отрицательное ЧЁТНОЕ число, значит, интеграл можно свести к тангенсам и его производной:
(1) Преобразуем знаменатель.
(2) По известной формуле получаем .
(3) Преобразуем знаменатель.
(4) Используем формулу .
(5) Подводим функцию под знак дифференциала.
(6) Проводим замену . Более опытные студенты замену могут и не проводить, но все-таки лучше заменить тангенс одной буквой – меньше риск запутаться.
Пример 21
Найти неопределенный интеграл
Это пример для самостоятельного решения.
Держитесь, начинаются чемпионские раунды =)
Зачастую в подынтегральной функции находится «солянка»:
Пример 22
Найти неопределенный интеграл
В этом интеграле изначально присутствует тангенс, что сразу наталкивает на уже знакомую мысль:
Искусственное преобразование в самом начале и остальные шаги оставлю без комментариев, поскольку обо всем уже говорилось выше.
Пара творческих примеров для самостоятельного решения:
Пример 23
Найти неопределенный интеграл
Пример 24
Найти неопределенный интеграл
Да, в них, конечно, можно понизить степени синуса, косинуса, использовать универсальную тригонометрическую подстановку, но решение будет гораздо эффективнее и короче, если его провести через тангенсы. Полное решение и ответы в конце урока
Главные интегралы, которые должен знать каждый студент
Перечисленные интегралы - это базис, основа основ. Данные формулы, безусловно, следует запомнить. При вычислении более сложных интегралов вам придется постоянно ими пользоваться.
Обратите особое внимание на формулы (5), (7), (9), (12), (13), (17) и (19). Не забывайте при интегрировании добавлять к ответу произвольную постоянную С!
Интеграл от константы
∫ A d x = A x + C (1)Интегрирование степенной функции
В действительности, можно было ограничиться только формулами (5) и (7), но остальные интегралы из этой группы встречаются настолько часто, что стоит уделить им немного внимания.
∫
x d x =
x
2
2
+ C
(2)
∫
x
2
d x =
x
3
3
+ C
(3)
∫
1
x
d x = 2
x
+ C
(4)
∫
1
x
d x = ln | x | + C
(5)
∫
1
x
2
d x = −
1
x
+ C
(6)
∫
x
n
d x =
x
n + 1
n + 1
+ C (n ≠ − 1)
(7)
Интегралы от показательной функции и от гиперболических функций
Разумеется, формулу (8) (пожалуй, самую удобную для запоминания) можно рассматривать как частный случай формулы (9). Формулы (10) и (11) для интегралов от гиперболического синуса и гиперболического косинуса легко выводятся из формулы (8), но лучше просто запомнить эти соотношения.
∫
e
x
d x =
e
x
+ C
(8)
∫
a
x
d x =
a
x
ln a
+ C (a > 0, a ≠ 1)
(9)
∫
s h x
d x = c h x + C
(10)
∫
c h x
d x = s h x + C
(11)
Базовые интегралы от тригонометрических функций
Ошибка, которую часто делают студенты: путают знаки в формулах (12) и (13). Запомнив, что производная синуса равна косинусу, многие почему-то считают, что интеграл от функции sinx равен сosx. Это неверно! Интеграл от синуса равен "минус косинусу", а вот интеграл от cosx равен "просто синусу":
∫
sin x d x = − cos x + C
(12)
∫
cos x d x = sin x + C
(13)
∫
1
cos
2
x
d x = t g x + C
(14)
∫
1
sin
2
x
d x = − c t g x + C
(15)
Интегралы, сводящиеся к обратным тригонометрическим функциям
Формула (16), приводящая к арктангенсу, естественно, является частным случаем формулы (17) при a=1. Аналогично, (18) - частный случай (19).
∫
1
1 +
x
2
d x = a r c t g x + C = − a r c c t g x + C
(16)
∫
1
x
2
+
a
2
=
1
a
a r c t g
x
a
+ C (a ≠ 0)
(17)
∫
1
1 −
x
2
d x = arcsin x + C = − arccos x + C
(18)
∫
1
a
2
−
x
2
d x = arcsin
x
a
+ C = − arccos
x
a
+ C (a > 0)
(19)
Более сложные интегралы
Данные формулы тоже желательно запомнить. Они также используются достаточно часто, а их вывод довольно утомителен.
∫
1
x
2
+
a
2
d x = ln |
x +
x
2
+
a
2
| + C
(20)
∫
1
x
2
−
a
2
d x = ln |
x +
x
2
−
a
2
| + C
(21)
∫
a
2
−
x
2
d x =
x
2
a
2
−
x
2
+
a
2
2
arcsin
x
a
+ C (a > 0)
(22)
∫
x
2
+
a
2
d x =
x
2
x
2
+
a
2
+
a
2
2
ln |
x +
x
2
+
a
2
| + C (a > 0)
(23)
∫
x
2
−
a
2
d x =
x
2
x
2
−
a
2
−
a
2
2
ln |
x +
x
2
−
a
2
| + C (a > 0)
(24)
Общие правила интегрирования
1) Интеграл от суммы двух функций равен сумме соответствующих интегралов: ∫ (f (x) + g (x)) d x = ∫ f (x) d x + ∫ g (x) d x (25)
2) Интеграл от разности двух функций равен разности соответствующих интегралов: ∫ (f (x) − g (x)) d x = ∫ f (x) d x − ∫ g (x) d x (26)
3) Константу можно выносить за знак интеграла: ∫ C f (x) d x = C ∫ f (x) d x (27)
Легко заметить, что свойство (26) - это просто комбинация свойств (25) и (27).
4) Интеграл от сложной функции, если внутренняя функция является линейной: ∫ f (A x + B) d x = 1 A F (A x + B) + C (A ≠ 0) (28)
Здесь F(x) - первообразная для функции f(x). Обратите внимание: эта формула подходит только для случая, когда внутренняя функция имеет вид Ax + B.
Важно: не существует универсальной формулы для интеграла от произведения двух функций, а также для интеграла от дроби:
∫
f (x) g (x)
d x = ?
∫
f (x)
g (x)
d x = ?
(30)
Это не означает, конечно, что дробь или произведение нельзя проинтегрировать. Просто каждый раз, увидев интеграл типа (30), вам придется изобретать способ "борьбы" с ним. В каких-то случаях вам поможет интегрирование по частям, где-то придется сделать замену переменной, а иногда помощь могут оказать даже "школьные" формулы алгебры или тригонометрии.
Простой пример на вычисление неопределенного интеграла
Пример 1. Найти интеграл: ∫ (3 x 2 + 2 sin x − 7 e x + 12) d xВоспользуемся формулами (25) и (26) (интеграл от суммы или разности функций равен сумме или разности соответствующих интегралов. Получаем: ∫ 3 x 2 d x + ∫ 2 sin x d x − ∫ 7 e x d x + ∫ 12 d x
Вспомним, что константу можно выносить за знак интеграла (формула (27)). Выражение преобразуется к виду
3 ∫ x 2 d x + 2 ∫ sin x d x − 7 ∫ e x d x + 12 ∫ 1 d x
А теперь просто воспользуемся таблицей основных интегралов. Нам потребуется применить формулы (3), (12), (8) и (1). Проинтегрируем степенную функцию, синус, экспоненту и константу 1. Не забудем добавить в конце произвольную постоянную С:
3 x 3 3 − 2 cos x − 7 e x + 12 x + C
После элементарных преобразований получаем окончательный ответ:
X 3 − 2 cos x − 7 e x + 12 x + C
Проверьте себя дифференцированием: возьмите производную от полученной функции и убедитесь, что она равна исходному подинтегральному выражению.
Сводная таблица интегралов
∫ A d x = A x + C |
∫ x d x = x 2 2 + C |
∫ x 2 d x = x 3 3 + C |
∫ 1 x d x = 2 x + C |
∫ 1 x d x = ln | x | + C |
∫ 1 x 2 d x = − 1 x + C |
∫ x n d x = x n + 1 n + 1 + C (n ≠ − 1) |
∫ e x d x = e x + C |
∫ a x d x = a x ln a + C (a > 0, a ≠ 1) |
∫ s h x d x = c h x + C |
∫ c h x d x = s h x + C |
∫ sin x d x = − cos x + C |
∫ cos x d x = sin x + C |
∫ 1 cos 2 x d x = t g x + C |
∫ 1 sin 2 x d x = − c t g x + C |
∫ 1 1 + x 2 d x = a r c t g x + C = − a r c c t g x + C |
∫ 1 x 2 + a 2 = 1 a a r c t g x a + C (a ≠ 0) |
∫ 1 1 − x 2 d x = arcsin x + C = − arccos x + C |
∫ 1 a 2 − x 2 d x = arcsin x a + C = − arccos x a + C (a > 0) |
∫ 1 x 2 + a 2 d x = ln | x + x 2 + a 2 | + C |
∫ 1 x 2 − a 2 d x = ln | x + x 2 − a 2 | + C |
∫ a 2 − x 2 d x = x 2 a 2 − x 2 + a 2 2 arcsin x a + C (a > 0) |
∫ x 2 + a 2 d x = x 2 x 2 + a 2 + a 2 2 ln | x + x 2 + a 2 | + C (a > 0) |
∫ x 2 − a 2 d x = x 2 x 2 − a 2 − a 2 2 ln | x + x 2 − a 2 | + C (a > 0) |
Скачайте таблицу интегралов (часть II) по этой ссылке
Если Вы учитесь в ВУЗе, если у Вас возникли сложности с высшей математикой (математический анализ, линейная алгебра, теория вероятностей, статистика), если Вам нужны услуги квалифицированного преподавателя, зайдите на страничку репетитора по высшей математике . Будем решать Ваши проблемы вместе!
Возможно, вас заинтересуют также