Матрица в 3 степени решение. Нахождение обратной матрицы
Некоторые свойства операций над матрицами.Матричные выражения
А сейчас последует продолжение темы, в котором мы рассмотрим не только новый материал, но и отработаем действия с матрицами .
Некоторые свойства операций над матрицамиСуществует достаточно много свойств, которые касаются действий с матрицами, в той же Википедии можно полюбоваться стройными шеренгами соответствующих правил. Однако на практике многие свойства в известном смысле «мертвЫ», поскольку в ходе решения реальных задач используются лишь некоторые из них. Моя цель – рассмотреть прикладное применение свойств на конкретных примерах, и если вам необходима строгая теория, пожалуйста, воспользуйтесь другим источником информации.
Рассмотрим некоторые исключения из правила , которые потребуются для выполнения практических задач.
Если у квадратной матрицы существует обратная матрица , то их умножение коммутативно:
Единичной матрицей называется квадратная матрица, у которой на главной диагонали расположены единицы, а остальные элементы равны нулю. Например: , и т.д.
При этом справедливо следующее свойство
: если произвольную матрицу умножить слева или справа
на единичную матрицу подходящих размеров, то в результате получится исходная матрица:
Как видите, здесь также имеет место коммутативность матричного умножения.
Возьмём какую-нибудь матрицу, ну, скажем, матрицу из предыдущей задачи: .
Желающие могут провести проверку и убедиться, что:
Единичная матрица для матриц – это аналог числовой единицы для чисел, что особенно хорошо видно из только что рассмотренных примеров.
Коммутативность числового множителя относительно умножения матрицДля матриц и действительного числа справедливо следующее свойство:
То есть числовой множитель можно (и нужно) вынести вперёд, чтобы он «не мешал» умножить матрицы.
Примечание : вообще говоря, формулировка свойства неполная – «лямбду» можно разместить в любом месте между матрицами, хоть в конце. Правило остаётся справедливым, если перемножаются три либо бОльшее количество матриц.
Пример 4
Вычислить произведение
Решение
:
(1) Согласно свойству перемещаем числовой множитель вперёд. Сами матрицы переставлять нельзя!
(2) – (3) Выполняем матричное умножение.
(4) Здесь можно поделить каждое число 10, но тогда среди элементов матрицы появятся десятичные дроби, что не есть хорошо. Однако замечаем, что все числа матрицы делятся на 5, поэтому умножаем каждый элемент на .
Ответ :
Маленькая шарада для самостоятельного решения:
Пример 5
Вычислить , если
Решение и ответ в конце урока.
Какой технический приём важен в ходе решения подобных примеров? С числом разбираемся в последнюю очередь .
Прицепим к локомотиву ещё один вагон:
Как умножить три матрицы?Прежде всего, ЧТО должно получиться в результате умножения трёх матриц ? Кошка не родит мышку. Если матричное умножение осуществимо, то в итоге тоже получится матрица. М-да, хорошо мой преподаватель по алгебре не видит, как я объясняю замкнутость алгебраической структуры относительно её элементов =)
Произведение трёх матриц можно вычислить двумя способами:
1) найти , а затем домножить на матрицу «цэ»: ;
2) либо сначала найти , потом выполнить умножение .
Результаты обязательно совпадут, и в теории данное свойство называют ассоциативностью матричного умножения
:
Пример 6
Перемножить матрицы двумя способами
Алгоритм решения двухшаговый: находим произведение двух матриц, затем снова находим произведение двух матриц.
1) Используем формулу
Действие первое:
Действие второе:
2) Используем формулу
Действие первое:
Действие второе:
Ответ :
Более привычен и стандартен, конечно же, первый способ решения, там «как бы всё по порядку». Кстати, по поводу порядка. В рассматриваемом задании часто возникает иллюзия, что речь идёт о каких-то перестановках матриц. Их здесь нет. Снова напоминаю, что в общем случае ПЕРЕСТАВЛЯТЬ МАТРИЦЫ НЕЛЬЗЯ . Так, во втором пункте на втором шаге выполняем умножение , но ни в коем случае не . С обычными числами такой бы номер прошёл, а с матрицами – нет.
Свойство ассоциативности умножения справедливо не только для квадратных, но и для произвольных матриц – лишь бы они умножались:
Пример 7
Найти произведение трёх матриц
Это пример для самостоятельного решения. В образце решения вычисления проведены двумя способами, проанализируйте, какой путь выгоднее и короче.
Свойство ассоциативности матричного умножения имеет место быть и для бОльшего количества множителей.
Теперь самое время вернуться к степеням матриц. Квадрат матрицы рассмотрен в самом начале и на повестке дня вопрос:
Как возвести матрицу в куб и более высокие степени?Данные операции также определены только для квадратных матриц. Чтобы возвести квадратную матрицу в куб, нужно вычислить произведение:
Фактически это частный случай умножения трёх матриц, по свойству ассоциативности матричного умножения: . А матрица, умноженная сама на себя – это квадрат матрицы:
Таким образом, получаем рабочую формулу:
То есть задание выполняется в два шага: сначала матрицу необходимо возвести в квадрат, а затем полученную матрицу умножить на матрицу .
Пример 8
Возвести матрицу в куб.
Это небольшая задачка для самостоятельного решения.
Возведение матрицы в четвёртую степень проводится закономерным образом:
Используя ассоциативность матричного умножения, выведем две рабочие формулы. Во-первых: – это произведение трёх матриц.
1) . Иными словами, сначала находим , затем домножаем его на «бэ» – получаем куб, и, наконец, выполняем умножение ещё раз – будет четвёртая степень.
2) Но существует решение на шаг короче: . То есть, на первом шаге находим квадрат и, минуя куб, выполняем умножение
Дополнительное задание к Примеру 8:
Возвести матрицу в четвёртую степень.
Как только что отмечалось, сделать это можно двумя способами:
1) Коль скоро известен куб, то выполняем умножение .
2) Однако, если по условию задачи требуется возвести матрицу только в четвёртую степень , то путь выгодно сократить – найти квадрат матрицы и воспользоваться формулой .
Оба варианта решения и ответ – в конце урока.
Аналогично матрица возводится в пятую и более высокие степени. Из практического опыта могу сказать, что иногда попадаются примеры на возведение в 4-ю степень, а вот уже пятой степени что-то не припомню. Но на всякий случай приведу оптимальный алгоритм:
1) находим ;
2) находим ;
3) возводим матрицу в пятую степень: .
Вот, пожалуй, и все основные свойства матричных операций, которые могут пригодиться в практических задачах.
Во втором разделе урока ожидается не менее пёстрая тусовка.
Матричные выраженияПовторим обычные школьные выражения с числами. Числовое выражение состоит из чисел, знаков математических действий и скобок, например: . При расчётах справедлив знакомый алгебраический приоритет: сначала учитываются скобки , затем выполняется возведение в степень / извлечение корней , потом умножение / деление и в последнюю очередь – сложение /вычитание .
Если числовое выражение имеет смысл, то результат его вычисления является числом
, например:
Матричные выражения устроены практически так же! С тем отличием, что главными действующими лицами выступают матрицы. Плюс некоторые специфические матричные операции, такие, как транспонирование и нахождение обратной матрицы.
Рассмотрим матричное выражение , где – некоторые матрицы. В данном матричном выражении три слагаемых и операции сложения/вычитания выполняются в последнюю очередь.
В первом слагаемом сначала нужно транспонировать матрицу «бэ»: , потом выполнить умножение и внести «двойку» в полученную матрицу. Обратите внимание, что операция транспонирования имеет более высокий приоритет, чем умножение . Скобки, как и в числовых выражениях, меняют порядок действий: – тут сначала выполняется умножение , потом полученная матрица транспонируется и умножается на 2.
Во втором слагаемом в первую очередь выполняется матричное умножение , и обратная матрица находится уже от произведения. Если скобки убрать: , то сначала необходимо найти обратную матрицу , а затем перемножить матрицы: . Нахождение обратной матрицы также имеет приоритет перед умножением .
С третьим слагаемым всё очевидно: возводим матрицу в куб и вносим «пятёрку» в полученную матрицу.
Если матричное выражение имеет смысл, то результат его вычисления является матрицей .
Все задания будут из реальных контрольных работ, и мы начнём с самого простого:
Пример 9
Даны матрицы . Найти:
Решение :порядок действий очевиден, сначала выполняется умножение, затем сложение.
Сложение выполнить невозможно, поскольку матрицы разных размеров.
Не удивляйтесь, заведомо невозможные действия часто предлагаются в заданиях данного типа.
Пробуем вычислить второе выражение:
Тут всё нормально.
Ответ : действие выполнить невозможно, .
Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е - единичная матрица n -го порядка. Обратная матрица может существовать только для квадратных матриц.
Назначение сервиса . С помощью данного сервиса в онлайн режиме можно найти алгебраические дополнения , транспонированную матрицу A T , союзную матрицу и обратную матрицу. Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word и в формате Excel (т.е. имеется возможность проверить решение). см. пример оформления .
Инструкция . Для получения решения необходимо задать размерность матрицы. Далее в новом диалоговом окне заполните матрицу A .
См. также Обратная матрица методом Жордано-Гаусса
Алгоритм нахождения обратной матрицыПример №1 . Запишем матрицу в виде:
A -1 = |
|
Особый случай : Обратной, по отношению к единичной матрице E , является единичная матрица E .
Линейная алгебра для чайников
Чтобы изучить линейную алгебру, вы можете прочесть и вникнуть в книгу И. В. Белоусова "Матрицы и определители". Однако она написана строгим и сухим математическим языком, который людям со средним умом воспринимать тяжело. Поэтому я сделал пересказ наиболее трудных для понимания мест этой книги, стараясь изложить материал как можно понятнее, максимально используя для этого рисунки. Доказательства теорем я опустил. Признаться, я и сам не стал в них вникать. Верю г-ну Белоусову! Судя по его работе, он грамотный и толковый математик. Скачать его книгу можно по адресу http://eqworld.ipmnet.ru/ru/library/books/Belousov2006ru.pdf Если собираетесь вникать в мою работу, это нужно сделать, потому что я буду на Белоусова часто ссылаться.
Начнём с определений. Что такое матрица? Это прямоугольная таблица чисел, функций или алгебраических выражений. Зачем нужны матрицы? Они сильно облегчают сложные математические расчёты. У матрицы можно выделить строки и столбцы (рис. 1).
Строки и столбцы нумеруются, начиная слева
сверху (рис. 1-1). Когда говорят: матрица размером m n (или m на n ), подразумевают под m количество строк , а под n количество столбцов . Например, матрица на рисунке 1-1 имеет размер "4 на 3", а не "3 на 4".
Смотрите на рис. 1-3, какие бывают матрицы. Если матрица состоит из одной строки, она называется матрицей–строкой, а если из одного столбца, то матрицей–столбцом. Матрица называется квадратной n–го порядка, если число строк у неё равно числу столбцов и равно n. Если все элементы матрицы равны нулю, то это нулевая матрица. Квадратная матрица называется диагональной, если равны нулю все её элементы, кроме расположенных на главной диагонали.
Сразу объясняю, что такое главная диагональ. На ней номера строк и столбцов одинаковые. Идёт она слева направо сверху вниз. (рис. 3) Элементы называются диагональными, если они расположены на главной диагонали. Если все диагональные элементы равны единице (а остальные нулю), матрица называется единичной. Две матрицы A и B одинакового размера называются равными, если все их элементы одинаковые.
2 Операции над матрицами и их свойстваПроизведением матрицы на число x является матрица того же размера. Чтобы получить это произведение, нужно каждый элемент умножить на это число (рис 4). Чтобы получить сумму двух матриц одинакового размера, нужно сложить их соответствующие элементы (рис. 4). Чтобы получить разность A - B двух матриц одинакового размера, нужно умножить матрицу B на -1 и сложить получившуюся матрицу с матрицей А (рис. 4). Для операций над матрицами справедливы свойства: А+В=В+А (свойство коммутативности).
(A + B)+C = A+(B + C) (свойство ассоциативности). По простому говоря, от перемены мест слагаемых сумма не меняется. Для операций над матрицами и числами справедливы свойства:
(обозначим числа буквами x и y, а матрицы буквами A и B) x(yA)=(xy)A
Эти свойства аналогичны свойствам, действующим при операциях над числами. Смотрите
примеры на рисунке 5. Также смотрите примеры 2.4 - 2.6 у Белоусова на стр. 9 .
Умножение матриц.Умножение двух матриц определено лишь тогда (в переводе на русский: матрицы можно умножать лишь тогда), когда число столбцов первой матрицы в произведении равно числу строк второй (рис. 7 , наверху, синие скобки). Чтобы лучше запомнить: цифра 1 больше похожа на столбец. В результате умножения получается матрица размером (смотри рисунок 6). Чтобы было проще запомнить, что на что надо умножать, предлагаю следующий алгоритм: смотрим рисунок 7. Умножаем матрицу A на матрицу B. У
матрицы A два столбца,
у матрицы B две строки - умножать можно.
1) Займёмся первым столбиком матрицы B (он у неё один только и есть). Записываем этот столбик в строку (транспонируем
столбик, о транспонировании чуть ниже).
2) Копируем эту строку, чтобы у нас получилась матрица размером с матрицу A.
3) Умножаем элементы этой матрицы на соответствующие элементы матрицы A.
4) Складываем получившиеся произведения в каждой строчке и получаем матрицу-произведение из двух строк и одного столбца.
На рисунке 7-1 даны примеры умножения матриц, которые размером поболее.
1) Здесь у первой матрицы три столбца, значит у второй должно быть три строчки. Алгоритм ровно тот же, что в предыдушем примере, только тут в каждой строчке три слагаемых, а не два.
2) Здесь у второй матрицы два столбца. Сначала проделываем алгоритм с первым столбцом, затем со вторым, и получаем матрицу "два на два".
3) Тут у второй матрицы столбец состоит из одного элемента, от транспонирования столбец не изменится. И складывать ничего не надо, так как в первой матрице всего один столбец. Проделываем алгоритм три раза и получаем матрицу "три на три".
Имеют место следующие свойства:
1. Если сумма B + C и произведение AB существуют, то A (B + C) = AB + AC
2. Если произведение AB существует, то x (AB) = (xA) B = = A (xB).
3. Если произведения AB и BC существуют, то A (BC) = (AB) C .
Если произведение матриц AB существует, то произведение BA может не существовать. Если даже произведения AB и BA существуют, то они могут оказаться матрицами разных размеров.
Оба произведения AB и BA существуют и являются матрицами одинакового размера лишь в случае квадратных матриц A и B одного и того же порядка. Однако, даже в этом случае AB может не равняться BA.
Возведение в степеньВозведение матрицы в степень имеет смысл лишь для квадратных матриц (подумайте, почему?). Тогда целой положительной степенью m матрицы A является произведение m матриц, равных A. Так же, как и у чисел. Под нулевой степенью квадратной матрицы A понимается единичная матрица того же порядка что и A. Если позабыли, что такое единичная матрица, гляньте на рис. 3.
Так же, как и у чисел, имеют место следующие соотношения:
A mA k=A m+k (A m)k=A mk
Смотрите примеры у Белоусова на стр. 20.
Транспонирование матрицТранспонирование -это преобразование матрицы A в матрицу AT ,
при котором строки матрицы A записываются в столбцы AT с сохранением порядка. (рис. 8). Можно сказать по другому:
столбцы матрицы A записываются в строки матрицы AT с сохранением порядка. Обратите внимание, как при транспонировании меняется размер матрицы, то есть количество строк и столбцов. Также обратите внимание, что элементы на первой строке, первом столбце, и последней строке, последнем столбце остаются на месте.
Имеют место следующие свойства: (AT )T =A (транспонируй
матрицу два раза - получишь такую же матрицу)
(xA)T =xAT (под x имеется в виду число, под A, разумеется, матрица) (если надо матрицу умножить на число и транспонировать, можешь сначала умножить, затем транспонировать, а можешь наоборот)
(A+B)T = AT +BT (AB)T =BT AT
Симметричные и антисимметричные матрицыНа рисунке 9 вверху слева изображена симметричная матрица. Её элементы, симметричные относительно главной диагонали, равны. А теперь определение: Квадратная матрица
A называется симметричной, если AT =A . То есть симметричная матрица при транспонировании не меняется. В частности, симметричной является любая диагональная матрица. (Такая матрица изображена на рис. 2).
Теперь посмотрите на антисимметричную матрицу (рис. 9, внизу). Чем она отличается от симметричной? Обратите внимание, что все её диагональные элементы равны нулю. У антисимметричных матриц все диагональные элементы равны нулю. Подумайте, почему? Определение: Квадратная матрица A называется
антисимметричной, если AT = -A . Отметим некоторые свойства операций над симметричными и антисимметричными
матрицами. 1. Если A и B - симметричные (антисимметричные) матрицы, то и A + B - симметричная (антисимметричная) матрица.
2.Если A - симметричная (антисимметричная) матрица, то xA также является симметричной (антисимметричной) матрицей. (в самом деле, если умножить матрицы из рисунка 9 на какое - нибудь число, симметрия то всё равно сохранится)
3. Произведение AB двух симметричных или двух антисимметричных матриц A и B есть матрица симметричная при AB = BA и антисимметричная при AB = -BA.
4. Если A - симметричная матрица, то и A m (m = 1, 2, 3, . . .) - симметричная матрица. Если A
Антисимметричная матрица, то Am (m = 1, 2, 3, . . .) яв ляется симметричной матрицей при четном m и антисимметричной - при нечетном.
5. Произвольную квадратную матрицу A можно представить в виде суммы двух матриц. (назовём эти матрицы, например A(s) и A(a) )
A=A (s)+A (a)
Здесь мы продолжим начатую в первой части тему операций над матрицами и разберём пару примеров, в которых потребуется применять несколько операций сразу.
Возведение матрицы в степень.Пусть k - целое неотрицательное число. Для любой квадратной матрицы $A_{n\times n}$ имеем: $$ A^k=\underbrace{A\cdot A\cdot \ldots \cdot A}_{k \; раз} $$
При этом полагаем, что $A^0=E$, где $E$ - единичная матрица соответствующего порядка.
Пример №4
Задана матрица $ A=\left(\begin{array} {cc} 1 & 2 \\ -1 & -3 \end{array} \right)$. Найти матрицы $A^2$ и $A^6$.
Согласно определению $A^2=A\cdot A$, т.е. для нахождения $A^2$ нам просто нужно умножить матрицу $A$ саму на себя. Операция умножения матриц рассматривалась в первой части темы , поэтому тут просто запишем процесс решения без подробных пояснений:
$$ A^2=A\cdot A=\left(\begin{array} {cc} 1 & 2 \\ -1 & -3 \end{array} \right)\cdot \left(\begin{array} {cc} 1 & 2 \\ -1 & -3 \end{array} \right)= \left(\begin{array} {cc} 1\cdot 1+2\cdot (-1) & 1\cdot 2+2\cdot (-3) \\ -1\cdot 1+(-3)\cdot (-1) & -1\cdot 2+(-3)\cdot (-3) \end{array} \right)= \left(\begin{array} {cc} -1 & -4 \\ 2 & 7 \end{array} \right). $$
Чтобы найти матрицу $A^6$ у нас есть два варианта. Вариант первый: банально продолжить домножать $A^2$ на матрицу $A$:
$$ A^6=A^2\cdot A\cdot A\cdot A\cdot A. $$
Однако можно пойти несколько более простым путём, используя свойство ассоциативности умножения матриц. Расставим скобки в выражении для $A^6$:
$$ A^6=A^2\cdot A\cdot A\cdot A\cdot A=A^2\cdot (A\cdot A)\cdot (A\cdot A)=A^2\cdot A^2\cdot A^2. $$
Если при решении первым способом потребовалось бы четыре операции умножения, то для второго способа - лишь две. Поэтому пойдём вторым путём:
$$ A^6=A^2\cdot A^2\cdot A^2=\left(\begin{array} {cc} -1 & -4 \\ 2 & 7 \end{array} \right)\cdot \left(\begin{array} {cc} -1 & -4 \\ 2 & 7 \end{array} \right)\cdot \left(\begin{array} {cc} -1 & -4 \\ 2 & 7 \end{array} \right)=\\= \left(\begin{array} {cc} -1\cdot (-1)+(-4)\cdot 2 & -1\cdot (-4)+(-4)\cdot 7 \\ 2\cdot (-1)+7\cdot 2 & 2\cdot (-4)+7\cdot 7 \end{array} \right)\cdot \left(\begin{array} {cc} -1 & -4 \\ 2 & 7 \end{array} \right)= \left(\begin{array} {cc} -7 & -24 \\ 12 & 41 \end{array} \right)\cdot \left(\begin{array} {cc} -1 & -4 \\ 2 & 7 \end{array} \right)=\\= \left(\begin{array} {cc} -7\cdot(-1)+(-24)\cdot 2 & -7\cdot (-4)+(-24)\cdot 7 \\ 12\cdot (-1)+41\cdot 2 & 12\cdot (-4)+41\cdot 7 \end{array} \right)= \left(\begin{array} {cc} -41 & -140 \\ 70 & 239 \end{array} \right). $$
Ответ : $A^2=\left(\begin{array} {cc} -1 & -4 \\ 2 & 7 \end{array} \right)$, $A^6=\left(\begin{array} {cc} -41 & -140 \\ 70 & 239 \end{array} \right)$.
Пример №5
Заданы матрицы $ A=\left(\begin{array} {cccc} 1 & 0 & -1 & 2 \\ 3 & -2 & 5 & 0 \\ -1 & 4 & -3 & 6 \end{array} \right)$, $ B=\left(\begin{array} {ccc} -9 & 1 & 0 \\ 2 & -1 & 4 \\ 0 & -2 & 3 \\ 1 & 5 & 0 \end{array} \right)$, $ C=\left(\begin{array} {ccc} -5 & -20 & 13 \\ 10 & 12 & 9 \\ 3 & -15 & 8 \end{array} \right)$. Найти матрицу $D=2AB-3C^T+7E$.
Вычисление матрицы $D$ начнем с нахождения результата произведения $AB$. Матрицы $A$ и $B$ можно перемножать, так как количество столбцов матрицы $A$ равно количеству строк матрицы $B$. Обозначим $F=AB$. При этом матрица $F$ будет иметь три столбца и три строки, т.е. будет квадратной (если этот вывод кажется неочевидным, посмотрите описание умножения матриц в первой части этой темы). Найдем матрицу $F$, вычислив все её элементы:
$$ F=A\cdot B=\left(\begin{array} {cccc} 1 & 0 & -1 & 2 \\ 3 & -2 & 5 & 0 \\ -1 & 4 & -3 & 6 \end{array} \right)\cdot \left(\begin{array} {ccc} -9 & 1 & 0 \\ 2 & -1 & 4 \\ 0 & -2 & 3 \\ 1 & 5 & 0 \end{array} \right)\\ \begin{aligned} & f_{11}=1\cdot (-9)+0\cdot 2+(-1)\cdot 0+2\cdot 1=-7; \\ & f_{12}=1\cdot 1+0\cdot (-1)+(-1)\cdot (-2)+2\cdot 5=13; \\ & f_{13}=1\cdot 0+0\cdot 4+(-1)\cdot 3+2\cdot 0=-3;\\ \\ & f_{21}=3\cdot (-9)+(-2)\cdot 2+5\cdot 0+0\cdot 1=-31;\\ & f_{22}=3\cdot 1+(-2)\cdot (-1)+5\cdot (-2)+0\cdot 5=-5;\\ & f_{23}=3\cdot 0+(-2)\cdot 4+5\cdot 3+0\cdot 0=7;\\ \\ & f_{31}=-1\cdot (-9)+4\cdot 2+(-3)\cdot 0+6\cdot 1=23; \\ & f_{32}=-1\cdot 1+4\cdot (-1)+(-3)\cdot (-2)+6\cdot 5=31;\\ & f_{33}=-1\cdot 0+4\cdot 4+(-3)\cdot 3+6\cdot 0=7. \end{aligned} $$
Итак, $F=\left(\begin{array} {ccc} -7 & 13 & -3 \\ -31 & -5 & 7 \\ 23 & 31 & 7 \end{array} \right)$. Пойдём далее. Матрица $C^T$ - транспонированная матрица для матрицы $C$, т.е. $ C^T=\left(\begin{array} {ccc} -5 & 10 & 3 \\ -20 & 12 & -15 \\ 13 & 9 & 8 \end{array} \right) $. Что же касаемо матрицы $E$, то это есть единичная матрица. В данном случае порядок этой матрицы равен трём, т.е. $E=\left(\begin{array} {ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$.
В принципе, мы и дальше можем идти пошагово, но оставшееся выражение лучше рассматривать целиком, не отвлекаясь на вспомогательные действия. По сути, нам остались лишь операции умножения матриц на число, а также операции сложения и вычитания.
$$ D=2AB-3C^T+7E=2\cdot \left(\begin{array} {ccc} -7 & 13 & -3 \\ -31 & -5 & 7 \\ 23 & 31 & 7 \end{array} \right)-3\cdot \left(\begin{array} {ccc} -5 & 10 & 3 \\ -20 & 12 & -15 \\ 13 & 9 & 8 \end{array} \right)+7\cdot \left(\begin{array} {ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) $$
Умножим матрицы в правой части равенства на соответствующие числа (т.е. на 2, 3 и 7):
$$ 2\cdot \left(\begin{array} {ccc} -7 & 13 & -3 \\ -31 & -5 & 7 \\ 23 & 31 & 7 \end{array} \right)-3\cdot \left(\begin{array} {ccc} -5 & 10 & 3 \\ -20 & 12 & -15 \\ 13 & 9 & 8 \end{array} \right)+7\cdot \left(\begin{array} {ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)=\\= \left(\begin{array} {ccc} -14 & 26 & -6 \\ -62 & -10 & 14 \\ 46 & 62 & 14 \end{array} \right)-\left(\begin{array} {ccc} -15 & 13 & 9 \\ -60 & 36 & -45 \\ 39 & 27 & 24 \end{array} \right)+\left(\begin{array} {ccc} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{array} \right) $$
Выполним последние действия: вычитание и сложение:
$$ \left(\begin{array} {ccc} -14 & 26 & -6 \\ -62 & -10 & 14 \\ 46 & 62 & 14 \end{array} \right)-\left(\begin{array} {ccc} -15 & 30 & 9 \\ -60 & 36 & -45 \\ 39 & 27 & 24 \end{array} \right)+\left(\begin{array} {ccc} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{array} \right)=\\ =\left(\begin{array} {ccc} -14-(-15)+7 & 26-30+0 & -6-9+0 \\ -62-(-60)+0 & -10-36+7 & 14-(-45)+0 \\ 46-39+0 & 62-27+0 & 14-24+7 \end{array} \right)= \left(\begin{array} {ccc} 8 & -4 & -15 \\ -2 & -39 & 59 \\ 7 & 35 & -3 \end{array} \right). $$
Задача решена, $D=\left(\begin{array} {ccc} 8 & -4 & -15 \\ -2 & -39 & 59 \\ 7 & 35 & -3 \end{array} \right)$.
Ответ : $D=\left(\begin{array} {ccc} 8 & -4 & -15 \\ -2 & -39 & 59 \\ 7 & 35 & -3 \end{array} \right)$.
Пример №6
Пусть $f(x)=2x^2+3x-9$ и матрица $ A=\left(\begin{array} {cc} -3 & 1 \\ 5 & 0 \end{array} \right) $. Найти значение $f(A)$.
Если $f(x)=2x^2+3x-9$, то под $f(A)$ понимают матрицу:
$$ f(A)=2A^2+3A-9E. $$
Именно так определяется многочлен от матрицы. Итак, нам нужно подставить матрицу $A$ в выражение для $f(A)$ и получить результат. Так как все действия были подробно разобраны ранее, то тут я просто приведу решение. Если процесс выполнения операции $A^2=A\cdot A$ для вас неясен, то советую глянуть описание умножения матриц в первой части этой темы.
$$ f(A)=2A^2+3A-9E=2A\cdot A+3A-9E=2 \left(\begin{array} {cc} -3 & 1 \\ 5 & 0 \end{array} \right)\cdot \left(\begin{array} {cc} -3 & 1 \\ 5 & 0 \end{array} \right)+3 \left(\begin{array} {cc} -3 & 1 \\ 5 & 0 \end{array} \right)-9\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array} \right)=\\ =2 \left(\begin{array} {cc} (-3)\cdot(-3)+1\cdot 5 & (-3)\cdot 1+1\cdot 0 \\ 5\cdot(-3)+0\cdot 5 & 5\cdot 1+0\cdot 0 \end{array} \right)+3 \left(\begin{array} {cc} -3 & 1 \\ 5 & 0 \end{array} \right)-9\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array} \right)=\\ =2 \left(\begin{array} {cc} 14 & -3 \\ -15 & 5 \end{array} \right)+3 \left(\begin{array} {cc} -3 & 1 \\ 5 & 0 \end{array} \right)-9\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array} \right) =\left(\begin{array} {cc} 28 & -6 \\ -30 & 10 \end{array} \right)+\left(\begin{array} {cc} -9 & 3 \\ 15 & 0 \end{array} \right)-\left(\begin{array} {cc} 9 & 0 \\ 0 & 9 \end{array} \right)=\left(\begin{array} {cc} 10 & -3 \\ -15 & 1 \end{array} \right). $$
Ответ : $f(A)=\left(\begin{array} {cc} 10 & -3 \\ -15 & 1 \end{array} \right)$.
В июле 2020 года NASA запускает экспедицию на Марс. Космический аппарат доставит на Марс электронный носитель с именами всех зарегистрированных участников экспедиции.
Если этот пост решил вашу проблему или просто понравился вам, поделитесь ссылкой на него со своими друзьями в социальных сетях.
Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.
Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.
Очередной канун Нового Года... морозная погода и снежинки на оконном стекле... Все это побудило меня вновь написать о... фракталах, и о том, что знает об этом Вольфрам Альфа. По этому поводу есть интересная статья , в которой имеются примеры двумерных фрактальных структур. Здесь же мы рассмотрим более сложные примеры трехмерных фракталов.
Фрактал можно наглядно представить (описать), как геометрическую фигуру или тело (имея ввиду, что и то и другое есть множество, в данном случае, множество точек), детали которой имеют такую же форму, как и сама исходная фигура. То есть, это самоподобная структура, рассматривая детали которой при увеличении, мы будем видеть ту же самую форму, что и без увеличения. Тогда как в случае обычной геометрической фигуры (не фрактала), при увеличении мы увидим детали, которые имеют более простую форму, чем сама исходная фигура. Например, при достаточно большом увеличении часть эллипса выглядит, как отрезок прямой. С фракталами такого не происходит: при любом их увеличении мы снова увидим ту же самую сложную форму, которая с каждым увеличением будет повторяться снова и снова.
Бенуа Мандельброт (Benoit Mandelbrot), основоположник науки о фракталах, в своей статье Фракталы и искусство во имя науки написал: "Фракталы - это геометрические формы, которые в равной степени сложны в своих деталях, как и в своей общей форме. То есть, если часть фрактала будет увеличена до размера целого, она будет выглядеть, как целое, или в точности, или, возможно, с небольшой деформацией".